GERMOPLASMA DE SOYA (*GLYCINE MAX* L. MERR.) CON INTERÉS PARA EL MEJORAMIENTO.

Mercedes Hernández, Zoila Fundora Mayor, Reynaldo López, Ileana Ravelo, Joel López y Alfredo Sánchez.

Instituto de Investigaciones Fundamentales en Agricultura Tropical "Alejandro de Humboldt", Calle I, esq. a 2, Santiago de las Vegas, Boyeros, Cuba. Calle 2 esquinq a 1, Stgo. de las Vegas, Boyeros, CP 17200, Ciudad Habana, Cuba. Email: zfundora@inifat.co.cu; csiu@infomed.sld.cu. Teléfono (53)7 6830093

RESUMEN

La caracterización y evaluación de las colecciones de soya de que se dispone en Cuba, es uno de los pasos iniciales en la potenciación del germoplasma de esta especie con vistas a su utilización en programas de desarrollo y/o mejoramiento. En el presente trabajo se estudiaron 50 cultivares procedentes de la colección cubana de esta especie, los cuales fueron clasificados preliminarmente, considerando los atributos de mayor variabilidad. Los cultivares fueron agrupados como precoces, intermedios y tardíos, de acuerdo a los días a la floración masiva. Se destacan los cultivares más promisorios en el grupo de los precoces y en el grupo de los intermedios + los tardíos respectivamente, recomendándose para su inclusión en los programas de mejoramiento de esta especie.

Palabras claves: Germoplasma de soya; caracterización; potenciación de germoplasma

SOYBEAN GERMPLASM (*GLYCINE MAX* L. MERR.) WITH INTEREST FOR BREEDING PROGRAMS.

ABSTRACT

Characterization and evaluation of cuban soybean collections, is one of the initial steps in germplasm potentiation of this species, in order to use it the development and breeding programs. In the present work, 50 cultivars from the cuban soybean collection were preliminary classified, considering the more variable attributes. The cultivars were grouped as early, intermediate and late ones, according to days to bulk flowering. More promising cultivars were outstanded in the early and intermediate plus late groups, repectively; these cultivars are recommended for their inclussion in the breeding programs of the species.

Keywords: Soybean germplasm; characterization; germplasm potentiation.

INTRODUCCION

La caracterización y evaluación de las colecciones de soya (*Glycine max* L. Merr.) de que se dispone en Cuba, es uno de los pasos iniciales en la potenciación del germoplasma de esta especie, con vistas a su utilización en programas de desarrollo y/o mejoramiento (Fundora *et al.*, 1994; Fundora, 1999).

La identificación de los cultivares más promisorios para cubrir determinados propósitos de estos programas, permite seleccionar más eficientemente los progenitores adecuados a incorporar en un diseño de cruzamiento, o servir de material básico para la utilización de técnicas más avanzadas para aumentar la variabilidad del mismo, buscando determinados atributos que no estén presentes en el material original (Gepts, 1995).

En el presente trabajo se comparan materiales de soya seleccionados a partir del análisis integral de una colección de diferentes orígenes, para identificar los cultivares más promisorios con vistas a su inclusión en programas de desarrollo y/o mejoramiento de la especie.

MATERIALES Y METODOS

Se estudiaron 50 cultivares de soya procedentes de la colección cubana de esta especie cusstodiada por el Instituto de Investigaciones Fundamentales en Agricultura Tropical (INIFAT) (Tabla 1), las cuales fueron evaluadas durante dos años (1997 y 1998), en siembras de marzo-abril (primavera). Los mismos fueron sembrados sobre suelo Ferralítico Rojo típico (Instituto de Suelos, MINAG, 1995), en áreas del INIFAT, en surcos de 5 m de largo, separados 0.60 m y con una distancia entre plantas de 0.10 m. Para la manipulación de las accesiones se siguieron las normas técnicas y fitosanitarias usuales (Grupo Nacional de soya, 1997).

En 10 plantas escogidas al azar de cada variedad, se evaluaron los siguientes caracteres: días hasta el 50% de floración masiva (FIF); altura de la planta en cm (AP); altura hasta la primera vaina en cm (A1V); número de nudos/planta (NN); número de vainas/planta (NVP); peso de semillas/planta en g (PSP); color de la pubescencia (CP); longitud de la vaina en mm (LV); color de la testa (CT) y longitud de la semilla en mm (LS).

Los datos promedio de los dos años fueron sometidos a un análisis de componentes principales sobre la base de la matriz de datos estandarizados (Cooley y Lohnes, 1971, citado por Fundora, 1999). Se tomó como criterio de selección para los autovectores más importantes, aquellos que tuvieron los valores mayores y cercanos entre sí (Fundora *et al.*, 1992; Rodríguez *et al.*, 1999 a y b; Fernández, 1999).

A partir de los grupos formados en el ACP, se dividió la colección en dos subconjuntos de cultivares, el primero con un período hasta la floración masiva entre 36 y 46 días, que fueron considerados precoces, y el segundo, los que tomaron más de 46 días para florecer, los cuales fueron considerados a su vez como intermedios y tardíos.

Para los datos de cada uno de estos grupos, se simuló un análisis de varianza de bloques al azar, tomando como réplicas cada una de las plantas individuales evaluadas, en los 6 atributos de mayor variabilidad que sirvieron de base a la agrupación obtenida: altura de las plantas, altura hasta la primera vaina, número de nudos, número de vainas/planta y peso de semillas/planta. Se realizó además la comparación múltiple de los promedios para todos los atributos, utilizando el test de Newman-Keuls.; se utilizó para ello el programa estadístico francés STAT-ITCF, versión 4.0.

RESULTADOS Y DISCUSION

En la Tabla 2 se observa que los primeros tres componentes acumularon más del 74% de la variabilidad total, que se debe al número de nudos, la altura de la planta, los días a la floración masiva y el número de vainas/planta en el primer componente (41%); el largo de la semilla, el largo de la vaina y el peso de semillas/planta, en el segundo componente (19.6%) y el color de la pubescencia en el tercer componente (13.6%). Según el plano C1-C2, las accesiones se distribuyeron en 14 grupos (Fig. 1), que a su vez constituyen conglomerados mayores muy bien definidos por la longitud del período de la siembra a la floración masiva.

Los tres grandes conglomerados se consideraron como cultivares precoces (grupos del I al VI), con un rango entre 36 y 42 días hasta la floración masiva; intermedios (grupos del VII al IX), que presentan entre 42 y 45 días para la floración masiva, y los tardíos (del X al XIV), con más de 45 días a la floración masiva.

Los análisis de varianza realizados en el grupo de cultivares precoces aparecen en la Tabla 3. Existieron diferencias significativas entre variedades para todos los atributos evaluados, y diferencias entre bloques para la altura de las primeras vainas, indicando lo adecuado de la utilización de la simulación del diseño de bloques al azar para el análisis de estos datos/planta, ya que permitió separar del cuadrado medio del error la variabilidad debida a las diferencias entre plantas. La variabilidad entre plantas para este carácter, sugerida por este resultado, es comprensible si se considera la forma de registro del mismo, a partir de la superficie del suelo hasta el primer nudo. Este punto de partida para el registro, no es una estructura anatómica *per se*; sin embargo, estos datos son importantes en la evaluación agronómica de los cultivares, pues define aquellos que son más aptos para la cosecha mecanizada.

Resultados obtenidos por Weber & Moorthy (1954), Johnson *et al.* (1955), Giglioli *et al.* (1980) y Densescu (1983), citados por Díaz Carrasco (1994; 1999), refuerzan nuestros resultados, ya que estos autores reportaron heredabilidades muy bajas para este carácter, entre 16 y 30%.

Si analizamos los resultados reflejados en la Tabla 4, podemos apreciar que los cultivares 'IAC-31', 'Van 94' y 'RS-5-Esmeralda' fueron los cultivares más altos, difiriendo significativamente del resto. Un segundo conjunto de cultivares le sigue a los tres primeros, con alturas entre 31 y 35 cm; el tercer conjunto entre 27 y 30 cm y un cuarto grupo con menos de 27 cm de altura, aunque no difieren entre sí de manera clara ninguno de estos grupos.

En cuanto a la altura hasta la primera vaina, no hubo diferencias marcadas entre las variedades evaluadas, sin embargo los cultivares 'FT-20 Yai' y 'BR-5' presentaron los valores más elevados.

En el número de nudos/planta ocurrió algo similar; no hubo diferenciación clara entre las variedades. No obstante, las variedades 'IAC-31', 'Van 94' y 'BR-5' fueron las de mayor producción de nudos.

Tampoco las diferencias fueron muy claras para el número de vainas /planta, siendo en este caso la 'IAC-31', la '67-1707' y la 'Mineira', las de mayor producción de éstas. Los mayores rendimientos se observaron en la 'Celeste', la 'BR-24', la 'IAC-31' y la 'BR-16'.

Por otra parte, en la Tabla 5 observamos el análisis de varianza realizado a los cultivares intermedios y tardíos. Se observaron diferencias entre variedades para todos los atributos analizados.

En la Tabla 6 se muestran las comparaciones de los promedios de las variedades en los atributos antes mencionados. El cultivar que presentó mayor altura fue 'Ocepan 9', que difirió significativamente del grupo integrado por 'TG x 1519-1D', 'TG x 1458-2E', 'Comercial FP3 Australia' y 'TG x 1470-1D' que difieren bastante claramente del resto.

En el caso de la altura hasta la primera vaina no hubo una diferenciación clara, al igual que para el número de nudos y el número de vainas/planta. En el primer atributo mencionado, los cultivares con mejores condiciones fueron 'TG x 1519-1D' e 'IAC-2', con más de 10 cm, aunque existe un grupo grande con similares características, entre 8 y 10 cm.

Los cultivares con mayor producción de nudos/planta fueron la 'Comercial FP3 Australia' y la 'CR-1 Busp 201'; las que mayor producción de vainas tuvieron fueron 'CR-1 Busp 20' e 'IAC-8-2'; este último fue el cultivar más productivo, con 23.4 g/planta, difiriendo significativamente de 'CR-1 Busp 20' (18.2 g), y ambos del resto, los que estuvieron por debajo de 13 g/planta.

CONCLUSIONES

Los cultivares evaluados presentaron un conjunto muy variado de combinaciones de caracteres, pero en general, los más adecuados para integrar ensayos más profundos para la evaluación del rendimiento fueron 'IAC-31', 'Mineira', '67-1707', 'RS-5-Esmeralda', 'FT-20 Yai', 'Celeste', 'BR-24', 'Van 94' y la 'BR-16', entre las precoces; entre las intermedias y tardías, las más destacadas fueron: 'Ocepan 9','TG x 1519-1D', 'TG x 1458-2E', 'Comercial FR3 Australia', 'TG x 1470-1D', 'TG x 1519-1D', 'CR-1 Busp 20' e 'IAC-8-2'.

REFERENCIAS

- Cooley, W. W. y P. R. Lohnes. 1971. *Multivariate data analysis*. J. Wiley and Sons, Eds., New York: 364pp.
- Díaz Carrasco, H., O. Velázquez, I. Busto, M. Díaz, H. Uranga, S. Castro, J. González Mauri, M. T. López, O. García & A. Plasencia. 1994. Obtención y desarrollo de variedades cubanas de soya en el INIFAT (1904-1994). En: 90 Años de la Estación Experimental Agronómica de Santiago de las Vegas.(Z. Fundora Mayor, R. Martínez Viera & A. Méndez Muñiz, eds.): 33-56.
- Díaz, H., O. Velázquez, I. Busto, H. Uranga, J. González Mauri, M. T. López, O. García y A. Plasencia 1999. Improvement of soybean for sustainable production in Cuba. *Proceedings World Soybean Research Conference*. V. I., H. E. Kauffman, Chicago, Illinois, USA, P. 746.
- Fundora Mayor, Z., L. Castiñeiras, M. Díaz, T. Shagarodsky y M. Esquivel. 1994. The utilization of plant genetic resources in Cuba The value of landraces for plant breeding. En: *Origin, evolution and diversity of cuban plant genetic resources*, Vol. 3: 705-718. (K. Hammer, M. esquivel y H. Knupffer, Eds.). Inst. fur Pflanzengenetik und Kulturpflanzenforschung, Gatersleben, Germany.
- **Fundora Mayor, Z. 1999**. Obtención de variedades de maní (Arachis hypogaea L.) a partir de colecciones cultivadas de la especie. Tesis presentada en opción al Grado Científico de Doctor en Ciencias Agrícolas. Ciudad de La Habana; 96pp.
- **Gepts, P. 1995.** Genetic markers and core collections. En: T. Hodgkin, A. H. D. Brown, Th. J. L. van Hintum & E. A. V. Morales (eds.) *Core collections of plant genetic resources, IPGRI*. Wiley-Sayce Publication: 127-146.
- **Grupo Nacional de Soya . 1997**. Memorias/ Grupo Nacional de Soya. En : Primer Taller Nacional de Soya, La Habana: 52pp.
- **Fernández, L. 1999**. Caracterización de la variabilidad morfológica y agronómica en 16 clones de yuca (Manihot esculenta Crantz.): Tesis de Maestría en Ciencias Biológicas, Mención Genética Vegetal: 71pp.
- Fundora Mayor, Z., R. Vera, E. Yaber & O. Barrios. 1992. La estadística multivariada en la sanidad vegetal, Instituto de Sanidad Vegetal, Ciudad de La Habana: 47 pp.
- Rodríguez Manzano, A., A. Rodríguez Nodals, Z. Fundora Mayor y L. Castiñeiras. 1999a. Diversidad de malanga isleña *Colocasia esculenta* L. Schott. en Cuba. I. Organos subterráneos. *Rev. Jardín Botánico*, Vol. XX: 91-104.

Rodríguez Manzano, A., A. Rodríguez Nodals, Z. Fundora Mayor y L. Castiñeiras. 1999b. Diversidad de malanga isleña *Colocasia esculenta* L. Schott. en Cuba. II. Organos foliares. *Rev. Jardín Botánico*, Vol. XX: 105-120.

Tabla 1. Germoplasma evaluado.

Código	Nombre del cultivar	Procedencia		
1	4167 Desconocio			
2	4167 (Manchas carmelitas)	Desconocido		
3	Chiflik	Desconocido		
4	Mineira	Brasil		
5	67-1707	Desconocido		
6	Van-94	Viet Nam		
7	Xanhn Bac Ha	Viet Nam		
8	Hogdson 78	Desconocido		
9	Forrest	EE.UU.		
10	Celeste	EE.UU.		
11	RS-9-Itauba	Brasil		
12	RS-5-Esmeralda	Brasil		
13	FT-20 Yai	Brasil		
14	IAC 2	Brasil		
15	BR-5	Brasil		
16	BR-16	Brasil		
17	FT-2	Brasil		
18	BR-1	Brasil		
19	BR-24	Brasil		
20	FT-Yatobá Bras			
21	Ocepan 7 Brillante	Brasil		
22	IAS 5	Brasil		
23	Ocepan 4 Iguaçu	Brasil		
24	Embrapa 3	Brasil		
25	Bragg	Brasil		
26	MSBR 20 TPE	Brasil		
27	Cobb	EE.UU.		
28	Ocepan 9	Brasil		
29	Paranaiba	Brasil		
30	Paraná	Brasil		
31	IAC-31	Brasil		
32	BR-13	Brasil		
33	Comercial FP3 Australia	Australia		
34	CR-1 Busp 201	Desconocido		

Revista Agrotecnia de Cuba

Tabla 1. Continuación.

Código	Nombre del cultivar	Procedencia
35	CPI 101097 Leichhardt	Desconocido
36	TG x 1437 – 1D	Nigeria
37	TG x 1440 – 1E	Nigeria
38	TG x 1440 – 2E	Nigeria
39	TG x 1445 – 3E	Nigeria
40	TG x 1447 – 3D	Nigeria
41	TG x 1448 – 2E	Nigeria
42	TG x 1458 – 2E	Nigeria
43	TG x 1463 – 1D	Nigeria
44	TG x 1470 – 1D	Nigeria
45	TG x 1485 – 1D	Nigeria
46	TG x 1497 – 1D	Nigeria
47	TG x 1519 – 1D	Nigeria
48	Corea	Desconocido
49	IAC – 8 –2	Brasil
50	TG x 1456 –2E	Nigeria

Tabla 2. Varianza de los componentes principales y autovectores determinantes. C1: componente 1; C2: componente 2; C3: componente 3; R²: coeficiente de determinación.

	C1		C2		C3	
Varianza	4.1034		1.9620		1.3592	
%Contribución	41.0	000	19.6000		13.6000	
%Acumulado	41.0000		60.6000		74.2000	
V. originales	Autovecto	R^2	Autovector	R^2	Autovector	R^2
	res		es		es	
FIF	-0.4340	0.7729	-0.0860	0.0150	0.0150	0.0230
AP	-0.4633	0.8806	-0.0010	0.0000	-0.1640	0.0140
A1V	-0.3225	0.4267	-0.0670	0.0090	-0.4120	0.1570
NN	-0.4753	0.9269	-0.3340	0.0020	-0.0310	0.0020
NVP	-0.4151	0.7070	0.0510	0.0050	0.2880	0.1410
PSP	-0.2244	0.2066	0.4820	0.4560	0.3880	0.1510
CP	0.0049	0.0001	0.1610	0.0510	-0.7420	0.3950
LV	-0.0859	0.0303	0.5680	0.6320	-0.1070	0.0340
СТ	-0.0270	0.0030	0.2770	0.1510	0.0000	0.4310
LS	0.1907	0.1493	0.5920	0.6410	-0.0850	0.0110

Revista Agrotecnia de Cuba

Tabla 3. Análisis de varianza para los cultivares precoces. ***: significación al 0.1%; *: significación al 5%.

Atributos	Fuentes	GL	CM
Altura de la planta	Variedades	30	206.70***
	Bloques	9	4.08
	Error	270	8.40
Desviación estándar	2.90		
Coeficiente de variación (%)	9.30		
Altura hasta la primera vaina	Variedades	30	10.72***
	Bloques	9	3.34*
	Error	270	2.45
Desviación estándar	1.57		
Coeficiente de variación (%)	24.70		
Número de nudos/planta	Variedades	30	5.09***
•	Bloques	9	0.18
	Error	270	0.68
Desviación estándar	0.82		
Coeficiente de variación (%)	7.70		
Número de vainas/planta	Variedades	30	212.09***
	Bloques	9	43.34
	Error	270	32.58
Desviación estándar	5.71		
Coeficiente de variación (%)	22.00		
Peso de semillas/planta	Variedades	30	46.68***
_	Bloques	9	7.04
	Error	270	4.60
Desviación estándar	2.15		
Coeficiente de variación (%)	23.70		

Tabla 4. Comparación de las medias de las variedades precoces para los diferentes atributos. Promedios con letras iguales no difieren significativamente entre sí.

ambutos. Promedios con letras iguales no differen significativamente entre si.					
Varieda	AP	A1V	NN	NVP	PSP
des					
31	44.05 A	6.00 CD	12.4 A	35.4 A	12.6 AB
6	42.20 A	6.65 BCD	12.0 AB	22.9 CDEFG	7.9 EFGHI
12	41.10 A	8.15 ABC	10.8 BCDEFGH	21.0 EFG	10.3 ABCDEF
15	35.05 B	8.55 AB	11.9 ABC	23.0 CDEFG	10.4 ABCDEF
7	34.90 BC	7.20 ABCD	11.0 BCDEFG	32.0 ABC	7.7 EFGHI
41	34.60 BCD	5.35 D	11.5 ABCDE	29.6 ABCDE	8.2 DEFGHI
5	34.40 BCD	6.35 BCD	11.0 BCDEFG	35.2 A	11.6 ABC
1	34.20 BCD	5.75 CD	10.1 FGHI	18.4 G	8.4 CDEFGHI
30	31.30 BCDE	5.15 D	10.3 EFGHI	21.5 EFG	6.9 FGHI
26	31.20 BCDE	7.10 ABCD	11.1 BCDEFG	29.5 ABCDE	10.9 ABCDE
18	31.05 CDE	7.40 ABCD	9.8 GHI	25.7 BCDEFG	8.3 DEFGHI
17	30.80 DEF	5.45 D	10.8 BCDEFGH	27.3 ABCDEFG	9.5 BCDEFGH
10	30.40 EFG	6.35 BCD	10.8 BCDEFGH	25.1 BCDEFG	13.1 A
3	30.15 EFG	5.35 D	9.3 I	25.1 BCDEFG	10.2 ABCDEFG
13	29.60 EFG	8.95 A	10.1 FGHI	19.0 FG	6.2 HI
8	29.55 EFG	7.25 ABCD	9.9 GHI	18.2 G	5.6 I
23	29.35 EFG	6.15 CD	11.3 ABCDEFG	22.8 CDEFG	7.8 EFGHI
12	29.30 EFG	7.50 ABCD	11.5 ABCDE	25.7 BCDEFG	6.8 GHI
11	28.95 EFG	6.85 ABCD	10.7 CDEFGH	19.5 FG	6.2 HI
9	28.95 EFG	4.95 D	10.8 BCDEFGH	26.1 BCDEFG	7.3 FGHI
16	28.60 EFG	6.10 CD	10.5 DEFGHI	31.1 ABCD	12.6 AB
4	28.50 EFG	6.60 BCD	10.5 DEFGHI	32.5 AB	11.3 ABCD
21	28.45 EFG	6.05 CD	10.4 DEFGHI	26.2 BCDEFG	9.4 BCDEFGH
24	28.20 EFG	6.05 CD	11.0 BCDEFG	26.3 BCDEFG	8.5 CDEFGHI
32	28.10 EFG	5.70 CD	10.3 EFGHI	22.4 DEFG	8.0 DEFGHI
25	27.70 EFG	6.60 BCD	9.60 HI	26.4 BCDEFG	10.2 ABCDEFG
19	27.60 EFG	5.25 D	11.7 ABCD	31.2 ABCD	13.1 A
20	27.05 EFG	5.10 D	10.4 DEFGHI	24.8 BCDEFG	7.1 FGHI
45	26.85 EFG	5.20 D	10.8 BCDEFGH	25.5 BCDEFG	6.2 HI
27	26.30 FG	5.90 CD	10.2 EFGHI	25.5 BCDEFG	8.7 CDEFGHI
22	26.01 G	5.55 D	10.6 DEFGH	28.1 ABCDEF	18.9 ABCDEFG

Tabla 5. Análisis de varianza para los cultivares intermedios y tardíos. ***: Significación al 0.1%.

Atributos	Fuentes	GL	CM
Altura de la planta	Variedades	18	987.18***
·	Bloques	9	22.70
	Error	162	18.39
Desviación estándar	4.29		
Coeficiente de variación (%)	8.30		
Altura hasta la primera vaina	Variedades	18	15.93***
	Bloques	9	1.06
	Error	162	4.29
Desviación estándar	2.07		
Coeficiente de variación (%)	24.70		
Número de nudos/planta	Variedades	18	10.26***
	Bloques	9	1.20
	Error	162	1.06
Desviación estándar	1.03		
Coeficiente de variación (%)	7.20		
Número de vainas/planta	Variedades	18	592.08***
	Bloques	9	91.46
	Error	162	119.06
Desviación estándar	10.91		
Coeficiente de variación (%)	26.70		
Peso de semillas/planta	Variedades	18	162.69***
· ·	Bloques	9	15.82
	Error	162	14.28
Desviación estándar	3.78		
Coeficiente de variación (%)	33.80		

Revista Agrotecnia de Cuba

Tabla 6. Comparación de las medias de las variedades intermedias y tardías para los diferentes atributos. Promedios con letras iguales no difieren significativamente al 5%.

Variedad	AP	A1V	NN	NVP	PSP
es					
28	70.2 A	9.1 ABC	15.4 AB	36.5 CDE	12.4 C
33	65.4 B	9.7 AB	15.8 A	41.3 ABCDE	12.4 C
47	62.4 BC	10.5 A	14.6 ABC	31.3 E	6.4 D
42	62.1 BC	9.7 AB	14.5 ABC	41.0 ABCDE	12.2 C
44	61.3 BC	7.3 BC	14.1 BC	32.1 E	6.3 D
40	57.7 C	7.0 BC	15.2 AB	50.8 ABC	9.7 CD
43	53.7 D	8.1 ABC	14.2 BC	50.0 ABC	12.8 C
37	51.6 DE	7.9 ABC	14.9 AB	38.9 BCDE	9.3 CD
14	51.5 DE	10.8 A	14.4 ABC	29.9 E	9.2 CD
36	50.2 DE	7.9 ABC	15.1 AB	49.3 ABCD	10.8 CD
49	49.7 DEF	6.0 C	14.2 BC	55.2 A	23.4 A
29	49.5 DEF	6.8 BC	13.4 CD	35.2 CDE	8.3 CD
46	48.6 DEF	8.4 ABC	14.2 BC	40.5 ABCDE	9.9 CD
48	48.5 DEF	8.4 ABC	12.2 D	33.3 DE	10.5 CD
39	46.3 EFG	8.5 ABC	13.2 CD	38.7 BCDE	9.3 CD
50	44.3 FG	8.9 ABC	14.3 BC	41.6 ABCDE	9.5 CD
38	43.1 GH	8.2 ABC	12.6 D	39.2 BCDE	8.4 CD
35	39.6 H	7.2 BC	13.1 CD	36.7 CDE	13.7 C
34	28.1 l	9.3 AB	15.8 A	54.3 AB	18.2 B

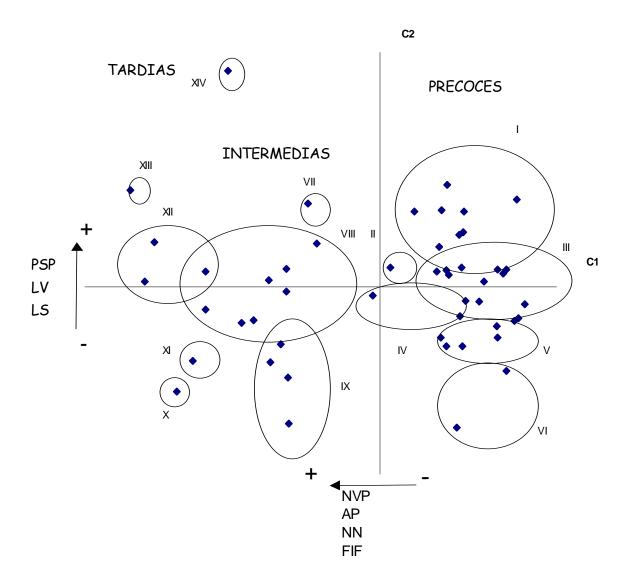


Fig. 1. Clasificación de los cultivares de soya evaluados